The Diabetic Foot

45 year old male

admitted to MAU via A&E:

- 3/52 history of "superficial ulcers" medial aspect of mid foot right
- treated by GP with oral Flucloxacillin 250 mg QDD for 7/7
- daily dressing
- now c/o of feeling nauseous and unable to keep any fluid/food down
- BM's 15-20, ketonuria: ++

45 year old male

• PMH:

- T1DM for 20 years
- "retinopathy (previous lasertherapy)
- diabetic peripheral neuropathy

• DH:

- novorapid pre-prandially/glargine at bedtime
- Lisinopril 20 mg o.d

45 year old male

• O/E:

- "looks unwell"
- BP 105/60 mmHg; P: 110/min
- temp: 38.1 C $^{\circ}$
- HS: normal, Chest: clear
- BM: 22 mmol/l
- ketonuria: ++

Little bit about epidemiology

- 15% of patients with diabetes:
 - chronic non healing foot ulcers
 - 15-20% of those require amputation
 - 15-70x more likely to undergo amputation
- 200 day of hospital stay before and after amputation
- estimated cost:
 - 13 million pounds per year to the NHS

- Peri-operative mortality: 10-15%
- 3-year survival rate: 50-59%

 5 years post amputation: reported mortality from 39% up to 68%

• BUT:

50% of foot ulcer are preventable!

Pathogenesis

- Peripheral vascular disease:
 - more distally
 - occurs at a younger age
 - Framingham: 50% of patients: absent foot-pulses
- peripheral neuropathy:
 - sensory and motor neuropathy
 - autonomic
- infection

Risk factors

- Previous ulcer
- foot deformity
- PVS
- diabetic neuropathy
- diabetic nephropathy
- impaired vision
- ill-fitted foot wear

PVD

- Macrovascular disease:
 - affects mainly calf vessel with sparing of proximal and foot vessels

- microvascular disease:
 - structural: thickened basement membrane, wall fragility and thrombosis
 - functional: vasomotor neuropathy and abnormal endothelial function

Neuropathy

Sensory:

 loss of light touch and vibration leading to loss of protective sensation

motor:

 affecting interossei and lumbrical muscles leading to hyperextension of metatarsophalangeal joints and flexion of interphalangeal joints

• autonomic:

 loss of sweating and arteriovenous shunting leading to dry, fissured skin and distended veins

Infection

- Superficial and local
- soft tissue and spreading (cellulitic)
- osteomyelitis

Bacteria isolated from ulcers

- Gram-positive:
- Staph. Aureus
- Streptococcus B
- Enterococcus

- Anaerobes:
- Bacteroides, Clostrid.,
 Peptostreptococcus

- Gram-negative:
- Proteus
- Klebsiella
- Enterobacter
- E. coli
- Pseudomonas aer.
- Citrobacter
- Serratia, Acinetobacter

Assessment

- Circulation:
 - palpation of foot-pulses
 - capillary refill
 - ankle/brachial pressure index (misleading in Moenckeberg sclerosis!)
 - toe-pressure
 - transcutaneous oxygen tension
 - arterial doppler
 - angiography

Assessment

Neuropathy:

- history and inspection
- light touch, pin-prick sensation, vibration sense, ankle reflexes

- 10 g monofilament
- biothesiometry

Result of assessment

- Neuropathic foot:
 - warm and well perfused
 - reduced sweating
 - dry skin and prone to fissuring
 - callus hard and dry
 - arch of foot raised and clawed toes
 - ulceration typically at sole of foot

Result of assessment

- Neuroischaemic foot:
 - cool and pulseless,
 - colour can be pink or red
 - reduced callus formation
 - ulcer at the margin of the foot and back of the heel

Signs of infection (1)

Ulcer:

- base changes from healthy pink granulation to yellowish or grey tissue
- purulent discharge
- smelly
- sinuses within the ulcer
- undermined edges
- exposed tendon or bone

Sign of infection (2)

- Mild cellulitis (<3cm):
 - erythema, warmth and swelling
- Severe cellulitis:
 - spreading of erythema and swelling
 - lymphangitis and tender LN
 - systemic symptoms
 - bluish-purple discolouration indicates s.c necrosis

Sign of infection (3)

Osteomyelitis:

- bone or tendon exposure
- penetrating of a sterile probe to the bone
- drainage of viscous, bubbly clear or yellowish fluid if joint is involved
- sausage shaped toe in case of chronic osteomyelitis

Management

- Assessment of the severity of infection
- Determination of the need for hospitalization
- Evaluation of the vascular supply
- Determination of the need for surgery (amputation and/or revascularization) or percutaneous revascularization
- Appropriate antimicrobial therapy
- Local wound care
- Relief of pressure on the ulcer (mechanical off-loading)
- Control of hyperglycemia
- Education

Management (2)

- Even if it's busy: Take the dressing off!!
- Inspect, feel and smell
- swabs from the base of the ulcer and bloodcultures
- X-Ray of foot:
 - ?osteomyelitis
 - ?gas in the tissue
 - ?foreign body

Management (3)

- Antibiotics:
 - most of the time: intravenously
 - cellulitis: benzylpenicillin + flucloxacillin
 - severe cellulitis: levofloxacin and augmentin
 - add metronidazole if suspicion of anaerobs
 - use clindamycin if suspicion of osteomyelitis
- in severe infections: liaise with microbiologist!

Management (4)

- Wound-care:
 - debridement and cleansing
 - appropriate dressing
 - rest and avoidance of pressure on ulcer
 - (aircast, total contact cast, scotchcast boot)
 - surgical intervention

Management (5)

Glycaemic control:

- adequate glycaemic control is imperative to aid healing of the ulcer (poor glycamia impedes neutrophil function):
 - almost all patients with more than mild infection will require insulin (sliding scale) to optimize glycaemia

Back to our case

- examination of peripheral pulses (dp and tp at least)
- ?peripheral neuropathy
- routine bloods including ven. HCO3
- swabs and blood culture
- X-Ray
- iv. insulin sliding scale
- iv. antibiotics (e.g Augmentin 1.2 g iv tds + iv Metronidazole 500 mg tds)
- discuss patient with vascular surgeon

Management (6)

Multidisciplinary approach:

 physician, vascular surgeon, orthopaedic surgeon, interventional radiologist, tissue viability nurse, chiropodist, orthotist, DSN